Yves D'Angelo

Yves D'Angelo

Since September 2016, I am Full Professor of Applied Mathematics at Université Côte d'Azur (formerly University of Nice-Sophia Antipolis) and Researcher at Laboratoire de Mathématiques & Interactions J.A. Dieudonné CNRS UMR 7351, in the Fluid Dynamics & Scientific Computing Group.

Since September 2019, I am Head of the J.A. Dieudonné Lab (~ 240 people).

From 2005 to 2016, I was Professor in the Energy & Propulsion Department, French Institute for Applied Sciences (INSA/CORIA), Rouen, France, and Researcher at CORIA Lab.


Research Interests

My main research interests deal with mathematical modeling, asymptotic analysis, numerical methods and scientific computing, first in fluid mechanics and combustion, more recently in the fields of fungal biology, nanothermoplasmonics and suspension flows.

In the combustion field, applications used to deal with combustive flows & thermoelectric conversion at the small scale, flame/wall interaction, expanding wrinkled flames, flame-balls & ignition kernels analysis, flame/acoustics interaction, percolation modeling for front propagation, stratified combustion modeling in engines.

More recent applications concern buoyant thermal destabilization in wet granular media and non-Newtonian flows (with Institut de Physique de Nice), biological dynamic expanding networks (see the DENA/DREAMS project below), thermodynamics of metabolic energy conversion under muscle load, ecological economics (with AFD), and also very recently thermoplasmonics at the nanoscale with the Inria Atlantis Team. Collaborations with Guillaume Baffou at Institut Fresnel in Marseille and Michel Meunier at Polytechnique Montréal are in progress.

At LIED and LJAD Labs , Recent applications and collaborations concern:

Lab Address


Laboratoire Mathématiques & Interactions J.A. Dieudonné
Université Côte d'Azur CNRS UMR 7351
Parc Valrose 06108 NICE CEDEX, France
ydangelo@unice.fr, yves.dangelo@univ-cotedazur.fr

Also

INRIA Atlantis Team
2004 Route des Lucioles 06902 Valbonne, France

Solvers

My team and I developed/still developing the following solvers:

  • DYCO, for simulating coupled potentials stock/flow approach network dynamics and application to thermo-electricity, biology, economics.
  • HALLEGRO for solving fully compressible subsonic reactive Navier-Stokes equations (HPC using MPI).
  • FLAMEX for solving asymptotics-based evolution equations, in particular propagating fronts through turbulent 2D and 3D flows (spectral/ETDRK methods for Sivashinsky-type non-linear non-local equations).

We now also make use of adapted versions of the OpenFOAM® software.

International & Industrial Collaborations

International Collaborations
Skolkovo Institute, Moscow; Politecnico Milano, Italy; CUED Cambridge University Engineering Department, UK ; Chair of Fluid Mechanics, TU Berlin, Germany; LTH, Lund University of Technology, Sweden: Dept. of Aircraft Technology, Institute of Nanoscience and Nanotechnology, Greece; University of Valencia, Spain; Queensland University of Technology, Australia; Institut Fresnel, Marseille; Ecole Polytechnique de Montréal, Canada.

Industrial Collaborations
Renault, IFPEN, ONERA, HBOB Grenoble, ST MicroElectronics Tours, BioPolis Spain.

External Links

and also the