Yves D'Angelo

Yves D'Angelo


Since September 2016, I am Full Professor of Applied Mathematics & Mechanics at the Université de Nice Sophia Antipolis and Researcher at Laboratoire de Mathématiques & Interactions J.A. Dieudonné CNRS UMR 7351, in the Fluid Dynamics & Scientific Computing Group.

I am also actively involved in the DyCo Team - Laboratoire Interdisciplinaire des Energies de Demain (LIED) CNRS UMR 8236, in Paris.

From 2005 to 2016, I was Professor in the Energy & Propulsion Department, French Institute for Applied Sciences (INSA/CORIA), Rouen, France, and Researcher at CORIA Lab.

Research Interests

My main research interests deal with mathematical modeling, asymptotic analysis, numerical methods and scientific computing.

In the combustion field, applications used to deal with combustive flows & thermoelectric conversion at the small scale, flame/wall interaction, expanding wrinkled flames, flame-balls & ignition kernels analysis, flame/acoustics interaction, percolation modeling for front propagation, stratified combustion modeling in engines.

More recent applications concern buoyant thermal destabilization in wet granular media and non-Newtonian flows (with Institut de Physique de Nice), biological dynamic expanding networks (see the DENA/DREAMS project below), thermodynamics of metabolic energy conversion under muscle load, ecological economics (with AFD), and also very recently thermoplasmonics at the nanoscale with the Inria Nachos Team .

At LIED and LJAD Labs , Recent applications and collaborations concern:

Lab Address


Numerical Modeling & Fluid Dynamics Group
Laboratoire Mathématiques & Interactions J.A. Dieudonné
Université de Nice Sophia Antipolis CNRS UMR 7351
Parc Valrose 06108 NICE CEDEX, France
ydangelo@unice.fr, yves.d'angelo@univ-cotedazur.fr

DyCo Team
LIED/Laboratoire Interdisciplinaire des Energies de Demain
UMR 8236, Université Paris Diderot, Bât. Lamarck B 35 rue Hélène Brion 75013 Paris FRANCE.
yves.dangelo@univ-paris-diderot.fr ; yd@dyco.fr

Solvers

My team and I developed/still developing the following solvers:

  • DYCO, for simulating coupled potentials stock/flow approach network dynamics and application to thermo-electricity, biology, economics.
  • HALLEGRO for solving fully compressible subsonic reactive Navier-Stokes equations (HPC using MPI).
  • FLAMEX for solving asymptotics-based evolution equations, in particular propagating fronts through turbulent 2D and 3D flows (spectral/ETDRK methods for Sivashinsky-type non-linear non-local equations).

We now also make use of adapted versions of the OpenFOAM® software.

International & Industrial Collaborations

International Collaborations
Skolkovo Institute, Moscow; Politecnico Milano, Italy; CUED Cambridge University Engineering Department, UK ; Chair of Fluid Mechanics, TU Berlin, Germany; LTH, Lund University of Technology, Sweden: Dept. of Aircraft Technology, Institute of Nanoscience and Nanotechnology, Greece; University of Valencia, Spain; Queensland University of Technology, Australia.

Industrial Collaborations
Renault, IFPEN, ONERA, HBOB Grenoble, ST MicroElectronics Tours, BioPolis Spain.

External Links

and also the