Difference between revisions of "Essai Latex"

 
Line 10: Line 10:
 
     \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 
     \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
 
\end{align}
 
\end{align}
 
which occurs in the theory of uniform random walk integrals in the plane,
 
where at each step a unit-step is taken in a random direction.  As such,
 
the above integral  expresses the <math>s</math>-th moment of the distance
 
to the origin after <math>n</math> steps.
 
 
By experimentation and some sketchy arguments we quickly conjectured and
 
strongly believed that, for <math>k</math> a nonnegative integer:
 
 
\begin{align}
 
  \label{eq:W3k}
 
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
 
\end{align}
 
 
Appropriately defined, this equation also holds for negative odd integers.
 
  
  

Latest revision as of 14:42, 3 April 2016

\(E=mc^2\)


We consider, for various values of \(s\), the \(n\)-dimensional integral

\begin{align} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align}


\(\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}\)