Difference between revisions of "Essai Latex"

Line 1: Line 1:
<!-- some LaTeX macros we want to use: -->
+
<!DOCTYPE html>
$\newcommand{\Re}{\mathrm{Re}\,}
+
<html>
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$
+
<head>
 
+
<title>MathJax TeX Test Page</title>
We consider, for various values of $s$, the $n$-dimensional integral
+
<script type="text/x-mathjax-config">
\begin{align}
+
   MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
   \label{def:Wns}
+
</script>
  W_n (s)
+
<script type="text/javascript" async
  &:=
+
  src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">
  \int_{[0, 1]^n}
+
</script>
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
+
</head>
\end{align}
+
<body>
which occurs in the theory of uniform random walk integrals in the plane,
+
When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are
where at each step a unit-step is taken in a random direction. As such,
+
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
+
</body>
to the origin after $n$ steps.
+
</html>
 
+
By experimentation and some sketchy arguments we quickly conjectured and
+
strongly believed that, for $k$ a nonnegative integer
+
\begin{align}
+
  \label{eq:W3k}
+
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
+
\end{align}
+
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.  
+
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
+
at the end of the paper.
+

Revision as of 14:19, 3 April 2016

<!DOCTYPE html> <html> <head> <title>MathJax TeX Test Page</title> <script type="text/x-mathjax-config">

 MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});

</script> <script type="text/javascript" async

 src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_CHTML">

</script> </head> <body> When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$ </body> </html>